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The investigation of a standing wave due to gas blowing 
upwards over a liquid film; its relation to flooding 

in wetted-wall columns 
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(Received 8 January 1964 and in revised form 12 November 1964) 

A theory is given to predict the shape and amplitude of a standing wave formed 
on a liquid film running down a vertical surface, and due to an upward flow of gas 
over the liquid surface. The wave is maintained in position by the pressure 
gradients induced within the gas stream by acceleration over the windward part 
of the wave; over the leeward part of the wave, the gas pressure is roughly con- 
stant due to breakaway of the gas flow. 

The wave amplitude is found to be very sensitive to gas velocity so that the 
theory predicts a critical gas velocity beyond which the wave amplitude becomes 
very large; this critical velocity is confirmed by experiment, and the experiments 
confirm the predicted wave shape. The critical gas velocity also agrees reasonably 
well with published values of the flooding velocity in empty wetted-wall tubes; 
this velocity is defined as the point at which countercurrent flow of gas and liquid 
becomes unstable. The phenomenon of flooding, which has puzzled chemical 
engineers for many years, may thus be due to wave formation on the liquid film. 

From the theory are derived three dimensionless groups, namely, Weber 
number We E pg U; to/T, liquid-film Reynolds number Re = 4p1 Q/p, and 
Z T(pl/,ug)*/p. Here U, is the critical gas velocity, Q is the liquid volume flow 
rate per unit wetted perimeter, pg and pl are the gas and liquid densities, ,u is the 
liquid viscosity and T is its surface tension; to = (3,uQ/ptg)* is the liquid film 
thickness in the absence of gas flow. We, Re and 2 are uniquely related at the 
flooding point, and a diagram is presented to show this relation. This diagram will 
enable designers to predict flooding in wetted-wall tubes, though more experi- 
mental verification is required. 

1. Introduction 
A wetted wall column is a device used in the laboratory by chemical engineers 

for contacting a gas with a liquid; the apparatus consists of a vertical tube with 
a thin film of the liquid running freely under gravity down the inside wall, the 
gas being blown upwards through the tube, thus giving reasonably well-defined 
conditions of contact between the two phases. One problem that immediately 
arises is to find, at a given liquid rate, the maximum gas flow beyond which the 
countercurrent flow will not persist, some of the liquid being carried up by the 

t Present address : Shell Development Company, Emeryville, California. 
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gas stream. Experiments show that this limiting gas flow, the flooding velocity, 
can be measured with reasonable precision; the present paper gives a theory to 
predict it  . 

The basis of our theory is to assume that, at the limiting gas flow, a standing 
wave forms on the liquid surface, the amplitude being several times the mean 
film thickness. The calculations show that the wave amplitude is very sensitive 
to gas flow so that within a narrow range of increasing flows, the amplitude 
becomes very large indeed, and the upper limit of this range agrees with the 
measured gas flow for flooding of the wetted-wall column. 

The study of standing waves began with a rather different problem considered 
by Davidson & Howkins (1957). Their problem was the instability of a vertical 
water film due to pressure gradients within air accelerating upwards over the 
water surface. They studied the small amplitude instability of the film, and 
incidentally found that a large wave, having an amplitude many times the mean 
film thickness, could be formed; it is this wave with which we are now concerned. 
Experiments with Davidson & Howkins’ apparatus established the shape of the 
wave, shown in figure 2, plate 1, and it was possible to develop a theory to predict 
this shape. It was then clear that the pressure gradients necessary for Davidson & 
Howkins’ small amplitude instability are unimportant in the wave shown in 
figure 2 .  This wave is supported by pressure gradients within the air stream on 
the windward side; but these pressure gradients are due to the wave itsev, whereas 
in Davidson & Howkins’ problem, the pressure gradients were imposed by 
making the air accelerate through a nozzle. Also, for the wave shown in figure 2, 
the air flow breaks away above the crest; in Davidson & Howkins’ theory there 
was no such breakaway. 

Having established that the wave shown in figure 2 could occur with a uniform 
upward flow of air over a water film, it seemed likely that such a wave might be 
formed in wetted wall columns. That such waves are the cause of flooding is 
indicated by the fact that experimental data on flooding agree quite well with 
theory based on the calculations for the wave shown in figure 2. 

2. Experiment 

& Howkins (1957) with the following modifications: 
Figure 1 is a diagram of the apparatus, which was the same as that of Davidson 

(a )  their 1 in. diameter brass tube was replaced by a Perspex rod; and 
(b )  the orifice plate AA was as shown in figure 1 with the chamfer on the lower 

side, instead of the upper side as used by Davidson & Howkins. 
Both of these modifications made it easier to see the wave; in other respects 

the apparatus was the same as that of Davidson & Howkins who described it in 
detail. 

Wave formation 
Figure 2 shows the wave that could be formed just above the orifice AA in 
figure 1. The wave was stable within only a very narrow range of air and water 
rates around the values shown in figure 2 .  If the air rate was decreased slightly, 
the wave disappeared altogether; if the air rate was increased, droplets were 
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ripped off the crest of the wave. If the water rate was reduced, the tube did not 
wet properly, and if it  was increased, there was much rippling and this made the 
wave unstable. 

Water film 

' 1.5 in. diam. 

I 
I 

I .  I 
1 in. diam. 

Perspex rod 

FIGURE 1. Diagrammatic representation of the apparatus. 

Pressure distribution over the wave 

Measurements of pressure distribution over solid models of a single wave, and 
of a wave train, have been summarized by Ursell (1956), who described several 
investigations of this kind. None of these is directly applicable to the present 
problem, because our wave has a much greater ratio of amplitude to wavelength 
than in the studies described by Ursell who dealt with waves due to wind. 

Figure 2 is a direct photograph of the wave, and the wave profile seen in the 
photograph was copied in brass by turning on a lathe two brass sections 8in. 
long and initially of semi-circular cross-section. The two halves were temporarily 
bonded together along a diametral plane, and when the wave profile had been 
turned, a 0-75 in. diameter hole was bored along the axis of the assembly. This was 
then separated, and pressure tapping holes 0.0165in. in diameter were drilled 
normal to the wave surface; from each hole a lead of stainless-steel hypodermic 
tubing was then soldered in position, and the two halves were bonded together 
again. The assembly was then substituted for the Perspex tube in the apparatus 
of figure 1, the brass wave being in the same position as the water wave had been. 
Air was then passed through at the rate for wave formation, and the pressure at 
each tapping measured with a Chattock gauge, giving the experimental pressure 
distribution shown in figure 3. This shows clearly the drop in pressure due to 
acceleration of the air over the wave, with partial pressure recovery on the 
leeward side of the crest, and subsequent breakaway over the main part of the 
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lee-side of the wave. Reattachment of the air flow seems to take place at about 
the point where the wave ends, that is, where the liquid film becomes uniform 

1 1 1 1 1 1 1 1 1 1 1  

in 

l l l l l l 1 1 1 1 1 1  

Direction 

0.2 

-0.2 Experimental pressure 

I 

------- 

Equation (3) 

~ I l l l l r l l l l l l r l l l ~ l l l l r l l  

FIGURE 3. Pressure distribution over standing wave. 

3. Theory of the standing wave 
The theory depends upon the assumption that the gas flow breaks away a t  

the crest of the wave, so that there is a constant pressure in the gas on the 
leeward side and varying pressure due to acceleration of the gas on the windward 
side; the varying pressure supports the wave. Within the liquid film, the wave 
shape on the leeward side is determined by a balance between gravity and surface 
tension forces, viscous and inertia forces being neglected. In  calculating the wave 
shape on the windward side, gravity, surface tension, viscous, and inertia forces 
in the liquid film are allowed for, as well as the variation of pressure transmitted 
from the gas to the liquid phase. 

All the assumptions are set out in detail below. The flow patterns on the gas 
and liquid sides are interdependent, but each can be considered separately. 

Gas side 

The forces exerted on the wave by the gas are calculated as follows. 
(a)  It will be assumed that the gas flow breaks away from the liquid surface 

on the leeward side of the wave, and hence in this region the gas pressure must be 
constant. This assumption is substantiated by the experimental pressure profile 
shown in figure 3, which indicates breakaway just behind the wave crest, with 
roughly constant pressure thereafter. 

( b )  We shall neglect the shear stress exerted on the liquid surface by the gas. 
An order-of-magnitude calculation shows that the effect of shear stresses on the 
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film is much less than the effect of normal pressure. Also, this assumption is 
partly justified by the experimental results of Nicklin & Davidson (1962); they 
found that up to the flooding point, the liquid film thickness in a wetted-wall tube 
is unaffected by the gas flow, showing that the effect of interfacial shear on the 
liquid film is small. 

L 

-""I- OrY 

Numerical solutio 
of (12) (table 1 
Scale (cm) 
c-e-l 
0 0.05 0.1 

to Direction - of gas flow 
+ 4 +  

F 
FIGURE 4. Axes and wave profiles to scale. The experimental prof% 

from figure 2 is shown EW broken line. 

(c) For the variation of gas pressure over the windward surface of the wave we 
use the empirical expression 

( P  -p,)/p, u2 = (nt/21) (1 +nt/41). 

Here P is the pressure far upwind from the wave, and p ,  is the pressure at any 
point on its windward surface where the film thickness is t. The length I from the 
crest to the trough along the x-axis is indicated in figure 4, and U is the velocity 
of the gas stream. 

Equation ( 1 )  is similar in form to the theoretical result given by Lamb (1932) 
for two-dimensional potential flow of two fluids parallel to their interface which 
has sinusoidal undulations of small amplitude. Neglecting second-order terms, 
the theory given by Lamb leads to 
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the equation for the solid boundary being 
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t = -a sin [n(x - Z)/2Z], ( 3 )  

where a is the amplitude of the undulations. 
Figure 3 shows (1) plotted by substituting values o f t  from the experimental 

profile. Equation (1) is seen to give a good estimate of the overall pressure drop 
from crest to trough; also, the pressure gradients are in fair agreement with 
measured values. Figure 3 also shows ( 3 )  plotted for comparison with the 
experimental profile; the two curves agree quite well for 0 < x < 0.25 em. 

Liquid side 

Within the liquid film in the region h in figure 4, viscous and inertia forces will be 
neglected; this approximation will be more valid in the thicker parts of the film 
near the wave crest; obviously viscous and possibly inertia forces are important 
in the thinner parts of the film. However, using this approximation throughout 
the region h in figure 4 we infer that the pressure within the liquid must vary 
linearly with height. The gas pressure being constant within this region, in view 
of assumption (a )  above, we have. 

P, -Po - P1 9x = T(dZt/dx2), (4) 

po being the liquid pressure just under the wave crest, andpl the gas pressure on 
the leeward side of the wave; pz is the liquid density, g the acceleration due to 
gravity, T the surface tension, and x is the vertical co-ordinate shown in figure 4. 

The boundary conditions for (4) at x = 0 are t = a + to and dt/dx = 0, a being 
the wave amplitude. By integrating (4), using these boundary conditions to 
eliminate the constants of integration, and using also the conditions t = to, 
dtldx = 0 a t  x = -A ,  we get 

Po-Pl = h l 9 h  = (3aTP?g2 /2 )~ ,  ( 5 )  

2 6 T  

The wave amplitude a is an independent variable in the above analysis, and 
figure 4 shows that if a is chosen to have the experimental value, ( 6 )  gives a good 
prediction of the wave shape upwind from the crest. From (5) the pressure at L, 
figure 4, is p, - +plgh. The actual pressure at L is probably higher, on account of 
viscous and inertia forces within the wave, and these forces must make the 
pressure equal top, within the liquid a short distance above L, assuming that the 
gas pressure remains constant above L. But the experimental pressure distribu- 
tion in figure 3 shows that reattachment of the gas flow occurs just above L, and 
this is a further complication. However, the neglect of viscosity and inertia 
within the liquid clearly gives almost the right wave shape though perhaps the 
wrong liquid pressure in the region above the crest. 

Below the crest, viscous and inertia forces within the liquid will be included. 
These forces become dominant in the lowest part of the wave where the film 
thickness is approaching its asymptotic value. 
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We consider, therefore, the forces acting on the liquid between two fixed 
horizontal planes AA' and BB' with co-ordinates x, x + dx as shown in figure 4. 
The downward resultant of the forces on the liquid between these planes must be 
pzgtdx-(dp,/dx)tdx-7,dx, where 7, is the wall shear stress at AB; we are 
assuming uniform pressure across a horizontal section, and as before, we are 
neglecting the interfacial shear stress a t  A'B'. The resultant force on the liquid 
must equal the net rate of transfer of momentum across the boundary AA' BB', 
and hence 

where v is the downward velocity of the liquid at any point within the film. The 
flow within the liquid is assumed to be laminar and T,,, = p(dv/dy),=o, p being 
the liquid viscosity; as a first approximation the velocity distribution is assumed 
to be parabolic, and therefore 

This assumption is almost certainly wrong in the region of the wave crest, but in 
that region the viscous and inertia forces are small. However, the parabolic 
distribution must hold good far below the wave, where the film thickness 

to = ( 3 ~ Q l ~ i g ) ' ,  (9) 

Q being the volume flow rate per unit width; in the region where x --f I, with which 
we are chiefly concerned, the parabolic distribution is likely to be a reasonable 

approximation. The total flow in the liquid film is Q = vdy ,  and substituting 
for v from (8) gives the relation 1: 

Q = 7,t2/3p (10) 

pg-pl = T(d2t/dX2), (11) 

between Q and rW. Finally, the gas and liquid pressures are related by 

pg being given by ( l ) ,  and we can then get the following differential equation for 
the film thickness t by eliminating pz ,  pg ,  v and rU, from ( l ) ,  (7), (8), (10) and (11) 

The last two terms in (12) represent the effects of momentum and wall shear on 
the liquid film, and the second term in (12) represents the effect of pressure 
gradients in the gas stream. 

Boundary conditions for t at x = 0 

At the wave crest, x = 0, we must have 

t = a + to, dtldx = 0. (13) 

A third boundary condition comes from the requirement that the pressure within 
the liquid just above and below the crest must be equal topo, and the gas pressure 
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must also be the same on either side of the crest; hence from (11) d2t/dx2 must be 
continuous through the crest. Therefore the third boundary ‘condition for 
integration of (12) is obtained from (6) with x = 0, 

(d2t/dX2),=o = - [;a(p,g/T)2]+. (14) 

Integration of ( 12) 

Equation (12) was solved by numerical integration using the method based on 
Taylor’s series, as expounded by Jeffreys & Jeffreys (1946). The calculations 
were done by an I.B.M. 1620 digital computer with integration steps of 0.01 cm, 
and using the standard procedure for a ‘marching’ problem, as follows. 

(a) The calculation began at x = 0 with assumed values of the amplitude a and 
length I, and proceeded from the boundary conditions (13) and (la), using (12) 
to trace out t as a function of x in the region below the wave crest. 

(b )  When dt/dx became zero, at the trough of the wave, the computer compared 
the film thickness tl with the known asymptotic film thickness to from (9). 

( c )  The value of x at the trough was used as a revised estimate of I to recalculate 
the coefficients in (12). 

(d) The assumed amplitude a was then altered proportionately to the devia- 
tion tz - to at the trough and the cycle of calculations was repeated. 

(e)  When repeated cycles of the calculation gave a negligible deviation tz - to 
at the trough, the computer printed out the resulting wave form, and thus gave 
the wave amplitude and shape uniquely, for the given gas and liquid rates. 

4. Results and comparison with the authors’ experiments 
Table 1 shows a typical set of values of film thickness t as a function of x ,  which 

satisfy (la),  the boundary conditions (13) and (14), and give t = to when at/& = 0. 
At a given gas velocity, the wave is thus completely determinate, and its shape is 
plotted in figure 4, the values in table 1 having been chosen to give the same wave 
amplitude as was measured experimentally from figure 2 at the same liquid 
Reynolds number. Figure 4 shows the good agreement that is obtained between 
the theoretical and experimental wave shapes, and this is perhaps the best 
verification of the theory. The agreement between the experimental and theor- 
etical values of U ,  695 and 926cm/sec at the same wave amplitude, is poor. 
However, the experimental value of U is the volumetric air flow rate divided by 
the annular area between the orifice AA and the liquid film in figure 1; the 
actual velocity over the wave is probably somewhat higher than 695 cm/sec 
owing to the effect of the contraction coefficient of the sharp-edged orifice AA. 

Figure 5 shows a series of calculated wave shapes [from (6) and (12)], at constant 
liquid rate and varying gas rate. The diagram demonstrates the extreme sensi- 
tivity of wave shape to gas rate; it  is clear that the wave should be stable for only 
a very narrow range of gas flow rates, and this was certainly true for our apparatus. 
Figure 5 refers to a higher Reynolds number than the experimental one because 
at the lower value, the wave amplitude was so extremely sensitive to gas flow 
that is was very hard to get more than two wave shapes. 

Figure 6 shows the wave amplitude, calculated from the above theory, plotted 
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as a function of the group pg U21p,g, with various values of the liquid flow rate, 
surface tension and viscosity; the particular values are those for which experi- 
mental data, to be described later, are available in the literature. Figure 6 shows 

Fixed parameters: T = 72.5 dyn/cm; p1 = 1 g/c.c.; p = 1 cP; pg = 0.00122 g/c.c. 
Flow parameters: U = 926 cm/sec; Q = 0.25 cm2/sec; to = 0.0198 cm. 
Step size: 0.01 cm. 

x (cm) t (4 x (om) t (cm) 
0 0.1998 0.25 0.09842 
0.05 0.1950 0.30 0.06946 
0.10 0.1805 0.35 0.04526 
0.15 0.1576 0-40 0.028 13 
0.20 0.1290 0.45 0-01983 

TABLE 1. Typical computed wave-form 

FIGURE 5. Theoretical wave profiles at Re = 750; p = 1 cP; p1 = 1 g/c.c.; 
T = 72 dyn/cm; pa = 0.00122 g1c.c. 

how wave amplitude increases sharply with gas velocity, and there appears to 
be a critical value, U,, beyond which the wave amplitude becomes very large. 
The variable pg Uz should be a function of Q ,  pl, p ,  T ,  g ,  and from (la),  or from the 
theory of dimensionless groups, p g  Uzt,/T = We the Weber number, should be 
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FIGTJRE 6. Theoretical wave amplitude as a function of p,, U2/p,g for varying liquid flow, 
surface tension and viscosity. In all cases, pL = 1 g/c.c. 

00 

FIGURE 7. Dimensionless groups for formation of a large-amplitude wave. The circled 
points have been compared with experiment (see figure 8 and table 3). The symbols are 
defined in the summary and in the main text. 
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a function of Re = 4pl Q / p  and (TIP) (pJpq)* = 2 say, 2 being dependent only on 
the liquid properties. Figure 7 shows these dimensionless groups plotted, the 
family of curves being obtained from computer results like those in figure 6. 

The range of parameters plotted in figure 7 covers conditions for which 
experimental data are available, and these are shown ringed on figure 7, and are 
discussed in 5 5. The diagram does not extend beyond Re = 1000 because greater 
values would give a turbulent liquid film. Guidance as to the values of 2 was 
obtained from table 2 which shows the likely range for practical systems. It will 
be seen that figure 7 covers most of the possible cases. 

Surface 
Temp. tension Density Viscosity 

Liquid ("C) (dyn/cm) (g/c.c.) (CP)  

60 yo wt aqueous glycerol 20 67.5 1.15 10.95 
25 yo wt aqueous glycerol 20 69 1.06 2-095 
Benzene 80.1 21.25 0.82 0.31 

B. Pt 
Acetone 56.3 19.05 0.75 0.24 

B.Pt 
Carbon tetrachloride 76.8 19.9 1.48 0.50 

B. Pt 
Water 20 72 1.0 1.0 

100 58.8 0.96 0.28 
B. Pt 

Molten iron 1,400 1,835 6.9 2.015 
Mercury 20 465 13.55 1.55 
Sodium 97.7 294 0.93 0.726 
Potassium bromide (molten 800 83.8 2.07 1.19 
salt) 

TABLE 2. Values of 2 = T(p,/,ug)I/p for various liquids. 

z 
135 

1,230 
4,430 

5,420 

2,670 

3,360 
15,200 

63,700 
25,800 
20,500 

3,950 

- ~~ 

5. Flooding in wetted-wall columns 
Hewitt & Wallis (1963) experimented with a I t  in. diameter vertical tube with 

a water film running down the inside wall and air blown up countercurrently 
through the middle. They took high-speed cine pictures of the film and had this 
to say about the flooding point: 'Below the flooding point the liquid flow appeared 
steady and smooth and only very slightly wavy towards the bottom of the tube. 
Just below the flooding point an occasional sudden pulse, resembling a very large 
wave, would appear on the liquid film and hang there for a moment. At the 
flooding point this wave grew so large that the whole flow was disrupted and 
water was expelled from the top of the tube; at the same time the flow pattern in 
the whole tube became chaotic and the liquid film broke up into a series of large 
waves and surges.' We have quoted this passage because it describes, from 
experimental observations, exactly what our theory predicts, namely, the forma- 
tion of a standing wave on the liquid film, the wave being stable within a very 
narrow range of gas flow rates. Measurements of flooding velocities in vertical 
tubes have been made by Verschoor (1938), Wallis (1961,1962), Hewitt & Wallis 
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(1963) and Nicklin & Davidson (1962); comparisons between these data and the 
predictions of our theory are given in figure 8 and table 3. In  applying the theory 
to this case of flooding in a vertical tube, the following simplifications were made. 

(a)  The total liquid flow rate was divided by the circumference of the tube, 
to get Q the volume flow per unit perimeter. 

(b )  No modification was made to the surface tension term in (12) to allow for 
the curvature of the tube wall, 

(c) The gas velocity U was calculated from the volume flow rate of gas divided 
by the core area which was taken as the tube area minus the area occupied by 
the liquid film of thickness to; to was calculated for a plane surface with the same 
value of Q .  

(d) No allowance was made for the effect on the gas flow pattern of the finite 
ratio of wave amplitude to tube diameter. 

1200 I I I I I I I I I I I l l  I I I  
1100 
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900 

800 
700 

600 

500 

400 
300 
200 

100 

h 

0 
% 

6 

:: 
$ 
3 

. 
Y 

+ .+ 

3 

* 

FIUURE 8. 
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I I I I l l  I I I I I I l l 1  I I 1  

0 80 200 400 600 1000 2000 3000 
60 100 300 500 800 1500 2500 

Flooding in wetted-wall columns (air-water system) ; comparison of experiment 
with the theory for the occurrence of a large-amplitude wave. - , theory. x , Standing 
wave experiment; 0 ,  Nicklin & Davidson (1962). - - - , Wallis (1961) for a 1 in. diam. 
tube, his experimental data being correhtted on the top and bottom curves for smooth and 
rough tube end connexions, respectively. - - - , Hewitt & Wallis (1963). 

Figure 8 shows that, in spite of these simplifications, the theory gives reason- 
able agreement with the experiments. The latter show considerable scatter 
because of varying entrance conditions, a smooth entry giving higher flooding 
velocity. The mechanism of this effect is not clear, but the lower flooding velocity 
with rough entry conditions is presumably due to greater turbulence in the air 
or possibly water streams. However, the agreement between Hewitt & Wallis’s 
(1963) data and Nicklin & Davidson’s (1962) data show that, with smooth entry 
conditions, flooding is a reproducible phenomenon. These data and the earlier 
data of Wallis (1961) show that the theory gives a quite good prediction of the 
observed flooding velocity up to Reynolds numbers of about 1000, but above this 
value the liquid film may be turbulent (Binnie 1957) and this may account for the 
differences between theory and experiment shown at high Reynolds numbers in 
figure 8. 
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Table 3 shows theoretical results from figure 7, and experimental data for 
liquids with viscosity and surface tension different from that of water; Wallis’s 
(1961) data for air-water with smooth entry conditions are also shown for com- 
parison. The theory allows fairly well for the variation in physical properties. 

The approximate agreement between the theory of the standing wave and the 
experimental flooding data suggests that the phenomena are related. But the 
theory of the standing wave was derived from the orifice experiment in whibh the 
standing wave is initiated and stabilized by the pressure gradients through the 
orifice. It is not easy to see howa standing wave can form in a wetted-wall column, 
particularly in view of the requirement of separation of the gas flow on the leeward 
side of the wave crest. Apart from Hewitt & Wallis’s photographs, there is no 
direct evidence, and we can only speculate as to the manner in which a standing 
wave is initiated in a wetted-wall column; this may be as follows: 

(i) At the lower end of a wetted-wall column, the pressure gradients in the gas 
may induce a standing wave. This instability occurs when agas stream accelerates 
over a falling liquid film, and was considered by Davidson & Kowkins (1957); 
the same authors showed further (Howkins & Davidson 1958a,b) that the 
resultant wave is not crucially dependent on the orifice dimensions provided the 
necessary pressure gradients are present. 

(ii) Alternatively, it  is conceivable that separation can occur on the leeward 
side of one of the ripples which are always present on the surface of the liquid 
film except at very low liquid Reynolds numbers. Separation of the airflow from 
such ripples is not a very probable event, but on the other hand there are at any 
instant many ripples in a wetted-wall column; if the airflow is enough to support 
a standing wave, only one ripple needs to have separated air flow for a very short 
time to give a standing wave. A probability argument of this kind is in line with 
the paragraph quoted above from Hewitt & Wallis’s paper describing ‘an 
occasional pulse ’. On this argument it seems unlikely that the airflow can exceed 
the flow for the formation of a standing wave without such a wave being actually 
formed. 

The points in figure 7 corresponding to the theoretical results in table 3 have 
been circled to show which regions of figure 7 have been verified experimentally. 
Clearly, more data are required before figure 7 can be used with complete con- 
fidence, but it should be valuable to the designer of wetted-wall columns as a 
guide for calculating flooding velocities. 

The dimensionless groups in figure 7 may be compared with those used by 
Wallis (1961, 1962) who correlated Kp$[gD(p,-p,)]-* with V,p*[gD(pl -p,)]-* 
where V i  and V, are the superficial velocities (volume flow rate divided by the 
cross-sectional area of the tube) of both phases, and D is the tube diameter. It is 
particularly interesting to note that the tube diameter does not appear in the 
groups in figure 7. This absence of D agrees with the results of Verschoor (1938) 
who found that U, is independent of D ,  unless D is very small; with very small 
values of D, the circularity effect, (b )  above, must be important. 

One of us (C. J. S.) would like to acknowledge the support given by a Sir James 
Caird Scholarship. 
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